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We study the infinite time shock limits given certain Markovian initial velocities
to the inviscid Burgers turbulence. Specifically, we consider the one-sided case
where initial velocities are zero on the negative half-line and follow a time-
homogeneous nice Markov process X on the positive half-line. Finite shock
limits occur if the Markov process is transient tending to infinity. They form a
Poisson point process if X is spectrally negative. We give an explicit description
when X is furthermore spatially homogeneous (a Lévy process) or a self-similar
process on (0,.). We also consider the two-sided case where we suppose an
independent dual process in the negative spatial direction. Both spatial
homogeneity and an exponential Lévy condition lead to stationary shock limits.
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1. INTRODUCTION

The viscid Burgers equation

“tu (e)+u(e) “xu (e)=e“2xxu
(e), u (e)(0, x)=u0(x), x ¥ R

is known to describe in the inviscid limit e a 0 the velocity field u(t, x)=
lime a 0 u (e)(t, x), t \ 0, x ¥ R, of an infinitesimal particle system that per-
forms completely inelastic collisions. Although it was introduced by
Burgers as a model for the turbulence of compressible fluids typically



supposed to have a small viscosity e > 0, applications in many other fields
have come up since, e.g., cluster formation in the universe or chemical
interface growth. See Burgers, (1) Woyczynski (2) and their references for
discussions of these and other physical motivations, Hopf (3) for the math-
ematical solution in the viscid and inviscid case, the latter leading to a
geometrical analysis which we recall below (Section 2).

This model is of particular interest when allowing random initial data,
i.e., when u0 is a stochastic process indexed by the spatial variable x ¥ R.
Many different classes of processes have been considered, e.g., white
noise, (1, 4–7) Brownian motion, (8–10) Lévy processes (11, 10) and fractional
Brownian motion. (12) Due to Lax’ entropy condition (13) u( · , t) has no posi-
tive jumps at positive times t > 0. We shall here consider a large class of
Markov processes with no positive jumps as initial velocities and then
specialize on Lévy processes and self-similar processes of order a \ 0.

Quantities of interest are the velocities and the shock structure of the
model at positive times, i.e., the clusters that are formed due to the inelastic
collisions and the so-called regular particles that have not participated in
shocks. In this paper we study, in a sense, the convergence of shock struc-
ture and cluster velocities as time tends to infinity. Tribe and Zaboronski (14)

considered compactly supported white noise initial velocities and showed
(indeed for large classes of compactly supported initial data) that the shock
structure degenerates to two large clusters pushing the margins. One is then
naturally led to estimating mass and velocity behaviour of these two
clusters. We shall encounter a completely different behaviour.

We start with a one-sided situation, i.e.,

u0(x)=0 for x < 0 and u0(x)=Xx for x \ 0

where X is a càdlàg Markov process. An important observation is that one
can calculate the infinite time limit from Bertoin (10) where X is more speci-
fically a spectrally negative Lévy process. Furthermore the methods can
be refined to larger classes of Markov processes. We focus on processes
satisfying the assumption Xx Q., xQ.. This assumption ensures that
even in the limit as t tends to infinity, there are no infinite limit clusters;
this follows from the fact that the speed of a given particle is bounded
above by the maximal speed attained to its left and below by the minimal
speed attained to its right. In the limit it is heuristically obvious that clus-
ters and regular particles (if any) are ordered by their velocities, i.e., a limit
cluster made from particles started from [a1, a2) is slower than and a
cluster [a3, a4), a2 < a3. Note however, that their velocities are positive
(apart from an initial interval from which particles may move to the left).
Thus, one cannot associate a limit location. Our main result says, that if X

894 Winkel



has no positive jumps, then the limiting shock structure can be described in
terms of a Poisson point process on [x0,.)×(0,.) whose points (u, d)
correspond to clusters of total size d and common speed u. In the case of
a Lévy process or a self-similar Markov process we make the intensity
measure explicit and derive formulas for the law of the limit cluster size of
a given particle etc. For the corresponding two-sided analogue

u0(−x)=X̃x− and u0(x)=Xx for x \ 0

for two independent identically distributed Lévy processes X and −X̃ (or
their exponential process), we show that the process of limit cluster sizes
a(y) of particles started from y ¥ R, is stationary.

Note that our limits are unscaled limits. Hence, they provide a
complement to the wide literature on scaling limits in Burgers turbulence,
cf. Leonenko, (15) Woyczynski (2) and their references.

The rest of the paper is organised as follows. Section 2 deals with the
analysis of limit clusters in a deterministic setting. In Section 3 we treat the
random setting, successively for one-sided Markov processes, one-sided
Lévy processes, self-similar Markov processes and the two-sided case.

2. GEOMETRICAL DESCRIPTION OF LIMIT CLUSTERS

The inviscid Burgers turbulence describes an infinitesimal particle
system whose particles are initially uniformly distributed on R (according
to Lebesgue measure) and perform inelastic collisions, i.e., two particles
(particle clumps) that meet form a larger particle clump under conservation
of masses and momenta (loss of energy). As time t > 0 evolves, the shocks
generally lead to a mixture of particle clumps, infinitesimal particles (their
positions are called regular points) and empty areas (called rarefaction
intervals). A description in terms of the initial velocities u0 can be done
based on the so-called inverse Lagrangian

at(x)=arg+min
a ¥ R

3F a
0
(u0(y)−(x−y)/t) dy4

where arg+mina ¥ R assigns the right-most value a for which the expression
is minimal. For quite general u0, e.g., u0 càdlàg with

lim inf
|y|Q.

y−1u0(y) \ 0

at is increasing and right-continuous, and describes the shock structure at
time t as follows.
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(i) An interval Ig=[g, d) where at is constant is a rarefaction
interval, i.e., at time t there are no particles in Ig.

(ii) A continuity location x of at outside the union of Ig, g \ 0, con-
tains a regular particle, i.e., an infinitesimal particle which has not been
involved in any shocks. It started from at(x) and has kept its initial speed
up to time t.

(iii) A jump location x of at contains a cluster whose size at time t is
equal to the jump size s=Da(x). This cluster is built from the particles
with initial positions in [a(x−), a(x)). If the minimum defining at(x) is
attained more than twice, there is a shock at time t which merges particle
clumps and/or infinitesimal particles as described by the minimum posi-
tions: each two neighbouring minimum positions correspond to a clump
whose size was the distance of the two positions, and if the minimum
is attained on an interval, the corresponding particles involved were
infinitesimal.

This description is well-known. Cf. e.g., Hopf, (3) also for the link to
Burgers equation. We also refer to ref. 16 where we gave an elementary
derivation.

Note that this analysis can be looked at in a much more geometrical
way as follows: consider the graph of the potential function k(a)=
>a0 u0(y) dy. Then at(x) is the right-most touching point of the maximal
parabola qc(a)=c−(a−x)2/2t minorizing k. Hence the function at is
defined by the family of maximal minorizing parabolas of curvature
−1/2t. It is natural to suppose that minorizing parabolas of curvature 0,
i.e., straight lines, describe the limit state as t tends to infinity. This is
indeed the case. We shall now give an analogous description of the limit
clusters as t tends to infinity.

Proposition 1. Consider an inviscid Burgers turbulence model with
càdlàg initial velocities u0. If for all y ¥ R

−. [ U− :=lim sup
zQ −.

u0(z) [ u0(y) [ lim inf
zQ.

u0(z)=: U+[. (1)

the function

a(x)=arg+min
a ¥ R

3F a
0
(u0(y)−x) dy4 , x ¥ (U− , U+)

is well-defined, right-continuous and increases from Y− :=inf{y ¥ R : u0(y)
> U−} \ −. to Y+ :=sup{y ¥ R : u0(y) < U+} [.. a describes the limit
structure as follows.
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(i) An interval Ig=[g, d) where a is constant consists of speeds
g [ x < d that are not attained in the limit.

(ii) A continuity point x of a outside the union of Ig, g \ 0, is the
speed of exactly one regular particle.

(iii) A jump location x of a is the speed of limit clusters of total size
s=Da(x). They are built from the particles with initial locations in
[a(x−), a(x)). In fact, there is only one cluster except when the minimum
defining a(x) is attained more than twice. In this case, the interval between
each two neighbouring minimum positions forms one such cluster and if
the minimum is attained on an interval, the corresponding particles are
regular.

(iv) The limit speeds U− and U+ are maintained by the regular
particles from (−., Y−) and [Y+,.), respectively.

In our applications we shall always have U+=. (and Y+=.).
However, choosing U−=0 and Y−=0 corresponds to one-sided initial
conditions. Some of our situations later correspond to a slightly more
general setting where the lower bound U− may be exceeded. We formulate

Corollary 1. If in the setting of Proposition 1 the upper bound in (1)
holds for all y ¥ R but the lower bound only for all y ¥ [y0,.), then a is
still well-defined, increasing and right-continuous on (U−, U+). The parts
(i)–(iii) and the U+ statement in (iv) hold, but the U− statement in (iv) may
be violated.

If moreover Y− > −., we have more precisely: if there exists
a y1 > Y− such that

1
y1−Y−

F
y1

Y−
u(y) dy < U− (2)

then there is an infinite cluster in the limit made up from all particles
started from (−., y2) where y2 is the supremum of all y1 that satisfy (2).
The limit speed of this cluster is U−. There may be more clusters or regular
particles with this limit speed. They can be described as in (iii) where
s=a(U−)−y2.

The proofs are based on the following lemma which contains the
relevant convergence results of the involved quantities. We shall need some
more notation.

From the above description it is clear that at(x) is the initial position
of the left-most particle to be found to the right of x at time t. Therefore,

xt(a)=inf{x ¥ R : at(x) > a}, a ¥ R
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describes the position at time t of the particle started from a and is called
the Lagrangian function. We also introduce the velocity at time t of
a particle started from a

ut(a)=
2xt(a)−at(xt(a)−)−at(xt(a))

2t

Lemma 1. In the situation of Proposition 1 or Corollary 1 we have
as t tends to infinity

at(tx)Q a(x) for x ¥ (U−, u(0)) and

at(tx−)Q a(x−) for x ¥ (u(0), U+)

and

ut(a)=U+ for a ¥ [Y+,.)

ut(a)Q u(a) :=inf{x ¥ R : a(x) > a} for a ¥ (0, Y+)

ut(a−)Q u(a−) for a ¥ [Y−, 0)

(ut(a)=U− for a ¥ (−., Y−))

i.e., we can refer to u(a) as the limit velocity of the particle started in a ¥ R.
The statement in parentheses is valid in the setting of Proposition 1 but
may fail in the setting of Corollary 1.

Proof. Let first x ¥ (u(0), U+) and e > 0 such that x− e > u(0). It
follows from the definition that a is right-continuous increasing. Due to (1)
or its weaker analogue in Corollary 1, there is an g > 0 such that for all
a < a(x− e−) we have

F
a(x−)

a
(u0(y)−x) dy < −g

and for t big enough, say y \ t0=t0(x, e, g),

F
a

0
(u0(y)−x) dy+

a2

2t
−F

a(x−)

0
(u0(y)−x) dy−

(a(x−))2

2t
> g−

g

2

=
g

2
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so that

at(tx−)=arg− min
a ¥ R

3F a
0
(u0(y)−x) dy+

a2

2t
4 > a(x− e)

where arg− min picks the left-most minimizing value, eventually increases
in t since a2/2t1−a2/2t2 is increasing in a for t1 < t2. We now show that
it increases to a(x−). For t \ t0 we have a(x−) \ at(tx−) since for all
a(x− e−) [ b < at(tx−)

F
b

0
(u0(y)−x) dy > F

at(tx−)

0
(u0(y)−x) dy+

(at(tx−))2

2t
−
b2

2t

> F
at(tx−)

0
(u0(y)−x) dy

\ F
a(x−)

0
(u0(y)−x) dy

and a(x−) [ supt \ t0 at(tx−) since for all b > supt \ t0 at(tx−) with

F
supt > 0 at(tx−)

0
(u0(y)−x) dy−F

b

0
(u0(y)−x) dy > d > 0

we have, first the existence of s \ t0 such that

b2

2s
−
(as(sx−))2

2s
<

d

2

and then

0 \ F
as(sx−)

0
(u0(y)−x) dx+

(as(sx−))2

2s
−F

b

0
(u0(y)−x) dy−

b2

2s

\ d−
d

2
> 0

the required contradiction.
The corresponding convergence for x ¥ (U−, u(0)) can be shown easily

by adapting the argument. In this case at(tx) eventually decreases to a(x).
For the third and fourth convergence statements look at

xt(a)
t
=inf{y ¥ R : at(ty) > a}Q inf{y ¥ R : a(y) > a}=u(a)
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for a > 0 and

xt(a−)
t
=inf{y ¥ R : at(ty) > a}Q inf{y ¥ R : a(y) > a}=u(a−)

for a < 0 which follows from the monotonicity in t and x and the conver-
gence of at(tx) as t tends to infinity. Now we conclude

ut(a)=
2xt(a)−at(xt(a)−)−at(xt(a))

2t
Q u(a)

for a > 0 and

ut(a−)=
2xt(a−)−at(xt(a−)−)−at(xt(a−))

2t
Q u(a−)

for a < 0 where the arguments of the at terms lie eventually below 2u(a) t
and at(xt(a)) is therefore bounded above.

The velocities on (−., Y−) and [Y+,.) follow from the definitions
by an elementary calculation. L

Proof of Proposition 1. (i) Take an interval Ig=[g, d) where a is
constant. Then u jumps from g to d hence, by Lemma 1, no particle has
a limit speed in [g, d).

(ii) Take a continuity point x of a which is not in one of the Ig.
Then, due to the monotonicity of a there is a unique a ¥ R such that
u(a)=x which means that exactly one infinitesimal particle has limit
velocity x. This particle cannot have participated in any shocks and is
therefore regular.

(iii) Take a jump location x of a, say of height s=Da(x). Then u
is constant on the corresponding interval [a(x−), a(x)) of length s.
Obviously, there are no particles from outside this interval involved in the
limit clusters and particles of limit speed x so consider only these particles
surrounded by void space. Let us look at the initial speeds u0(a) of these
particles a or rather v0(a)=u0(a)−x by a centering transformation that
does not change the shock evolution. Since the minimum defining a(x) is
attained in a(x−) and a(x) we have

F
a

0
v0(y) dy \ 0 for all a ¥ [a(x−), a(x)]
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and the minimum is attained wherever this integral vanishes. If this happens
on a whole interval I, then velocities are zero inside. In fact, these particles
are regular, since on every neighbouring interval the average velocity pulls
away from I such that they are never involved into shocks. Similarly, for
two neighbouring zeros g and d, particles from outside [g, d] never enter
the interval and particles from inside (g, d) never exit. Inside, the average
speed at the left is strictly positive, at the right strictly negative. It is easily
seen that, in the limit, all particles from (g, d) form one single clump.

(iv) This follows from the corresponding statement in Lemma 1. L

Proof of Corollary 1. Clearly, the above proof of Proposition 1 is
still valid for the corresponding statements in Corollary 1. Also, the addi-
tional statements concerning particles started from (−., Y−) follow using
the same arguments. L

3. STRUCTURE OF LIMIT CLUSTERS

3.1. The Markov Process Case

We shall only consider ‘‘nice’’ Markov processes, i.e., time homoge-
neous strong Markov processes that admit a càdlàg version. We work with
a standard model, i.e., the underlying probability space (W,A, (Px)x ¥ R)
is the Skorokhod space of càdlàg paths D(R+, R) or D(R, R) equipped
with probability measures Px, x ¥ R such that Xt(w)=w(t) is the Markov
process starting from x under Px. We may then also use the shift and
killing operators defined respectively by

(ht(w))(s)=w(t+s), (kt(w))(s)=w(s) 1{s [ t}

and the natural filtration of X by Ft=s(Xs, s [ t) suitably extended to be
right-continuous and complete. The Markov property can then be expressed
as follows: for every a.s. finite F-stopping time y we have

hyX and kyX are conditionally independent givenXy.

The law of hyX under Px is PXy

We can define the associated process of jumps

DXs=Xs−Xs− , s \ 0
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We say that X is spectrally negative if the whole process DX does not take
positive values a.s. This restriction still leaves a large class of processes,
e.g., Markov processes with infinitesimal generator an extension of

(Af)(x)=c(x) f −(x)+12s
2(x) f'(x)

+F
R
(f(x+y)−f(x)+1{|y| < 1} yf −(x))P(x, dy) (3)

are spectrally negative if P(x, (0,.))=0 for all x ¥ R. Such processes
exist, if c, s2 and P are sufficiently regular in x, furthermore 1Ny2 inte-
grable w.r.t. P(x, dy). We refer e.g., to Theorem (VII.1.13) of Revuz and
Yor (17) or to Jacob and Schilling. (18)

Our result is on the limit a of the inverse Lagrangian functions at in
terms of which we described the limit clusters in Proposition 1:

Theorem 1. Let X be a càdlàg strong Markov process with no
positive jumps such that Xy Q. a.s. as y tends to infinity. Then

a(x)=arg+min
a \ 0

3F a
0
(Xy−x) dy4

is increasing and right-continuous. Under Px0 , a(x)−a(x0), x \ x0, is a
process with independent increments, and independent of a(x0).

Proof. We adapt the proof of Theorem 1 of Bertoin. (10) First note
that a(x) is positive and finite Px0 -a.s. for all x \ x0. We refer to Proposi-
tion 1 for further properties of a. Fix x \ x0 and define processes

Ixy=F
y

0
(Xz−x) dz, mxy= inf

0 [ z [ y
{Ixz } and Dxy=I

x
y−m

x
y

We have for any stopping time T

DxT+y=˛
DxT+hTI

x
y if DxT+hTI

x
g \ 0 for all 0 [ g [ y

hTI
x
T− inf

0 [ y [ T
{hyI

x
y} otherwise

This shows the strong Markov property for the bivariate process (X, Dx)
since we can deduce that (XT+y, D

x
T+y) depends on FT only via XT and DxT.

Furthermore, Dx is continuous, so (X, Dx) is càdlàg. Now

a(x)=sup{y > 0 : Dxy=0}
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implies Xa(x)=x (by the absence of positive jumps for X, see also the defi-
nition of a(x) as an integral of Xy−x) and is therefore the last exit time
from (0, x). By Theorem (2.12) of Getoor (19) splitting at last exit times
yields two independent processes

ka(x)(X, Dx) and ha(x)(X, Dx)

Due to the monotonicity of a, the process a(z), x0 [ z [ x, is a functional
of ka(x)(X, Dx) whereas for any y \ 0

a(x+y)=arg+min
a \ 0
{Ix+ya }

=arg+ min
a \ a(x)

{Ix+ya(x)+ha(x)I
y
a−a(x)}

=a(x)+arg+min
a \ 0
{ha(x)I

y
a}

where we used Xa(x)=x and the independence from a of the first summand
in arg+min. This completes the proof. L

The assumption that X tends to infinity is essential for the validity of
the theorem. Typically, even a zero expectation leads to infinite limit clus-
ters. For instance, if X is Brownian motion, one deduces from Theorem 1
in ref. 10 by a simple scaling argument that, as t tends to infinity

at(0) ’ t2a1(0)Q.

3.2. The Lévy Process Case

A Lévy process is a space-time homogeneous Markov process. It can
be characterized by its generator on C2b . In fact, X is a Lévy process if and
only if in (3) the characteristics c, s2 and P do not depend on x. This
means in particular, that the laws Px are simply translations of each other
and the Markov property can be stated as: for every a.s. finite F-stopping
time y

hyX−Xy and kyX are independent.

The law of hyX−Xy under Px is P0

The characteristics c and s2 describe the continuous component of a Lévy
process X which is ct+sWt for a Brownian motion W. DX is a homoge-
neous Poisson point process with intensity measure P. In particular, X has
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a discrete jump structure if and only if P is a finite measure. A Lévy
process has bounded variation if and only if s2=0 and 1N |y| is integrable
w.r.t. P ( jumps summable without compensation). We then introduce

c −=c+F
R
1{|y| [ 1} yP(dy)

and see that Xt is a linear drift c −t plus jumps according to the Poisson
point process with intensity measure P which is not the case in general
since the integral defining c − does not converge and is indeed needed as
a compensation term in the integral of (3) ( jumps are not summable,
in general). A Lévy process is called a subordinator if its paths are a.s.
increasing. This is equivalent to having bounded variation, c − \ 0 and
P((−., 0))=0.

As standard references on Lévy processes we mention Bertoin (20) and
Sato, (21) also Bertoin (22) for more details on subordinators.

We can identify the law of the process

a(x)=arg+min
a \ 0

3F a
0
(Xy−x) dy4

in this case:

Proposition 2. Let X be a Lévy process with no positive jumps
such that Xy Q. a.s. as y tends to infinity. Then

(a(x)−a(0))x \ 0 ’ (T(x))x \ 0

where T(x), x \ 0, is the first passage time subordinator of X.

Proof. One may either conclude from Theorem 2 of Bertoin (10) by
passing to the limit tQ. or adapt the proof of our Theorem 2 below to
this simpler situation. L

3.3. The Self-Similar Case

Let Y be a Lévy process with Ys Q., sQ. and

Xz=exp{Yrz} where rz=inf 3 s \ 0 : F s
0

exp{aYu} du > z4 (4)
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the associated self-similar (sometimes also called semi-stable) process of
order a \ 0 on (0,.), cf. e.g., Lamperti (23) where he called 1/a the index
whereas we also allow the order a=0: the time change is then the trivial
rz=z, and X is just the exponential process X=exp{Y}. For all a \ 0,
X is a strong Markov process such that Xt Q., tQ.. If Y is spectrally
negative, then so is X. If Y0=log(x) then X0=x. Denote by Xx the
process X constructed from Y+log(x) for all x > 0. Then X has the
following scaling property:

(kXxk−az)z \ 0 ’ (X
kx
z )z \ 0

Lamperti showed, that all self-similar càdlàg strong Markov processes on
(0,.) are of the form (4) for a Lévy process Y that can be recovered by

Yu=log(XCu ) where Cu=inf 3 t \ 0 : F t
0
X−as ds > u4

It follows immediately from the definition that the first passage time
process TX of X1 can be given in terms of Y and its first passage time
process TY as follows

TXx=F
TYlog(x)

0
exp{aYu} du, x \ 1

Define the processes

a(x)=arg min
a \ 0

3F a
0
(X1z −x) dz4, x \ 1 and

b(x)=a(ex), x \ 0

Then our result is

Theorem 2. When X is a spectrally negative self-similar Markov
process of order a \ 0, then

a(x)−a(1) ’ TXx=F
log (x)

0
eay dTYy

where Y is the associated Lévy process. This holds as an identity in law of
processes, x \ 1.

Limit Clusters in the Inviscid Burgers Turbulence 905



Proof. We start by a calculation similar to the one in the proof of
Theorem 1 using the Markov property but also the scaling property

b(x+y)=arg min
a \ TXex

3F a
TXex
(X1z −e

x+y) dz4

=TXex+arg min
b \ 0

3F b
0
(X1TXex+z−e

x+y) dz4

’ TXex+arg min
b \ 0

3F b
0
(X̃e

x

z −e
x+y) dz4

’ TXex+arg min
b \ 0

3F b
0
(exX̃1e−axz−e

x+y) dz4

=TXex+arg min
b \ 0

3ex(1+a) F e
−axb

0
(X̃1z −e

y) dz4

=TXex+arg min
b \ 0

3F e
−axb

0
(X̃1z −e

y) dz4

=TXex+e
ax arg min

c \ 0

3F c
0
(X̃1z −e

y) dz4

=F
TYx

0
exp{aYu} du+eaxb̃(y)

and this is an identity in law of processes, y \ 0. We deduce in particular
that

(b(x+y)−b(x))y \ 0 ’ eax(b(y)−b(0))y \ 0 (5)

for all x \ 0. By Theorem 1 b is a process with independent increments. We
define another process with independent increments by

sx=F
[0− , z]

e−az db(z)=b(0)+F
(0, z]
e−az db(z)

and note that due to (5)

sx+y−sx=F
(0, y]
e−a(x+z) db(x+z) ’ F

(0, y]
e−az db(z)=sy−s0

i.e., s is a subordinator.
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We now show that s and TY have the same increment distribution, i.e.,
ds ’ dTY on (0,.). In fact our argument is a comparison of stationary
limit laws of Ornstein–Uhlenbeck type processes (OU processes). We define
the OU process B associated to s as

Bx=e−ax F
[0− , x]

eay dsy=e−axs(0)+e−ax F
(0, x]
eay dsy=e−axb(x)

and repeat the same procedure to define

Tx=e−axT
X
ex=e

−ax F
TYx

0
exp{aYu} du=e−ax F

[0, x]
eay dTYy

via the substitution u=TYy and similarly

Dx=e−axD
X
ex=e

−ax F
[0− , x]

eay dDYy=e
−axDY0+e

−ax F
(0, x]
eay dDYy

whereDY andDX are the last passage time processes associated withY andX1,
respectively. By a standard time reversal argument for spectrally negative
Lévy processes (cf. Theorem VII.18 in ref. 20 for a related result), we have
dDY ’ dTY on (0,.). Furthermore, since b(x)=a(ex) as well, is a passage
time of ex by X1 (due to the absence of positive jumps, as noted in the
proof of Theorem 1), we have Tx [ Bx [ Dx. Clearly, Yy Q., yQ.,
ensures

E(T1) <.S E((log T1)+) <.

so by Theorem 17.5.(i) in Sato, (21) T and D have weak limit distributions
which coincide due to dTY ’ dDY on (0,.). It is now easily seen (e.g.,
using Laplace transforms) that also the law of Bx tends to the same limit.
By Theorem 17.5.(ii) in ref. 21 we conclude that ds ’ dTY on (0,.). L

Note that the case a=0 of Theorem 2 is particularly simple:

Corollary 2. If X=exp{Y} for a spectrally negative Lévy process Y,
then

(a(x)−a(1))x \ 1 ’ (T(log(x)))x \ 1

where T(y), y \ 0, is the first passage time subordinator of Y. If T(1) has
characteristics (b, 0,P), then a(x+y)−a(x) has characteristics (log(x+y)
− log(x))(b, 0,P).

Limit Clusters in the Inviscid Burgers Turbulence 907



Theorem 1 applies toX=f(Y) for all strictly increasing continuous func-
tions f: RQ R, whereas f=exp is essential for the validity of Corollary 2.
More precisely, for general f, a(f(x))−Tx is independent of kT(x)X, but
the law of

a(f(x))−Tx ’ arg+min
a \ 0

3F a
0
(f(x+Yy)−f(x))4 (6)

depends on x, in general. E.g., take f linear apart from an increase of slope
in x1 and a decrease of slope in x2 large and far away from each other.
Then for x=x1, the integrals over the initial positive parts of excursions
get more weight than the integrals over the final negative parts of excur-
sions, such that the minimum in (6) is typically found close to the origin.
For x=x2, the opposite is the case, such that the minimum is closer to the
maximal possible value D0=sup{a \ 0 : Ya=0}. A time reversal argument
(as applied by Bertoin (10)) shows that for f=id the minimum position has
a symmetric distribution on [0, D0], whereas for f=exp, the distribution
is biased towards the origin. For a less particular f, this bias or at least the
law depend on x.

3.4. Consequences of the Main Results

In Proposition 1 we represented the structure of limit clusters in terms
of a. In Theorem 2 we described the law of a in terms of a subordinator.
This allows to deduce several corollaries that we only state for X self-
similar or the limit case X=exp{Y}. Of course, there is always an obvious
analogue for X=Y.

Corollary 3. Let X be a self-similar process associated to a spec-
trally negative Lévy process Y such that Yt Q. as tQ.. Then the set of
regular particles is given by

R={a(x) : x \ u(0), a continuous in x}

The limit shock structure is as follows.

(i) The shock structure is discrete if and only if the jump structure of
Y is discrete. Then R is a countable union of intervals.

(ii) R has positive Lebesgue measure if and only if Y has bounded
variation. In general, its Hausdorff dimension is given by

dim(R)=sup{a > 0 : lim
lQ.

l−1/aY(l)=0} ¥ [1/2, 1]

where Y is the Laplace exponent of Y.
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Proof. First note that Yt Q. for a spectrally negative Lévy process
is only possible if Y has unbounded variation or a positive drift coefficient.
This implies that a is strictly increasing since TY is, cf. ref. 20 section VII.1.
Therefore the results follow from Proposition 1 and Theorem III.15 in
ref. 20 which gives the dimension of the range of a subordinator. L

Corollary 4. Let X be a self-similar Markov process associated to a
spectrally negative Lévy process Y such that Yt Q. as tQ.. Denote by

s(u)=ll({a \ 0 : lim
tQ.
ut(a)=u}), u \ 1

the total size of limit clusters with limit speed u. Then {(u, s(u)) :
u \ 1, s(u) > 0} is a Poisson cloud in [1,.)×(0,.) with intensity measure
P(z−adg) z−1 dz.

Proof. The function s(u), u \ 1 specifies the jump sizes of a. From
(5) we deduce that the Poisson cloud of jumps of b has the intensity
measure P(e−ax dg) dx on [0,.)×(0,.). An elementary transformation
completes the proof. L

The Poisson property is actually also true in the general situation of
Theorem 1. The intensity measure is given by n([0, u]×ds)=Pu(ds) where
Pu is the Lévy measure of a(u). However, this is just another way of for-
mulating the statement of this theorem. The point of the corollary is the
explicit nature of the intensity measure.

Corollary 5. LetX=exp{Y} for a spectrally negative Lévy processY,
such that Yt Q. as tQ.. Denote by a(y) the limit cluster size of the
particle started from y. Then

P(a(y+a(1)) ¥ dz)=bv(y) d0+(V(y)−V(y−z))P(dz)

where V(x)=E(Sx) has a continuous derivative v on (0,.) if the drift
coefficient b of T is positive, Sx=sup0 [ y [ x Yy, x \ 0, is the renewal
measure of the first passage time process T and P is the Lévy measure
of T.

The condition Yt Q. ensures m :=E(T1) <.. The laws of a(y) con-
verge weakly as y tends to infinity to the limit law bm−1d0(dz)+m−1zP(dz).

To prove this corollary, there is a technicality to be ruled out being the
content of
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Lemma 2. Let X be a self-similar Markov process associated to a
spectrally negative Lévy process Y satisfying Yy Q., yQ., (or X=Y).
Then the following holds a.s. For all x > 0 (or x ¥ R, respectively)

Ixy=F
y

0
(Xz−x) dz

attains its overall minimum at most twice.

Proof. This proof requires several properties of Lévy processes for
which we refer to Bertoin. (20)

Note first, that a.s. for all x > 0 (or x ¥ R) Ix takes all its local minima
on {y \ 0 : Xy=x} since X is spectrally negative. We can therefore restrict
our attention to these points.

If Y has bounded variation, the hitting times of x form a discrete set,
more precisely, by the Markov property, they are described by an increas-
ing random walk Txn , n \ 1, with a geometric life-time. We also associate
the random walk Jxn=I

x(Txn) which is easily seen to have a non-atomic
step distribution F.

Define for all a ¥Q 5 [0,.) a stopping time

T(a)=inf{z > a : inf
0 [ y [ a

IXzy =I
Xz
z = inf

0 [ y [ z
IXzy }

{T(a) : a ¥Q 5 [0,.)} contains all those positions at which an Ix attains
its pre-minimum for a second time as a local minimum. The local minimum
property is due to the fact that X does not immediately decrease after
stopping times. This property is called irregularity of 0 for (−., 0] for Y.
By the Markov property of X, the random time

N(a)=inf{n \ 0 : TT(a)n =T(a)}

is such that (JX(T(a))n )n [N(a) is measurable w.r.t. FT(a) , and (JX(T(a))N(a)+n −J
X(T(a))
N(a) )n \ 0

is independent of FT(a) and distributed as J1 (or J0). In particular, it does
not hit zero a.s. by the non-atomicity of F. Therefore, the local minimum is
not attained for a third time.

If Y has unbounded variation, the hitting times of x do not form a
discrete set but the concept of local times allows to adapt this argument.
We leave the details to the interested reader. He may need to ensure the
local minimum property by postulating that the minimal value is attained
in T(a, e)− e and is not exceeded within distance of a rational e > 0. L

Proof of Corollary 5. By Lemma 2 there is at most one limit cluster
(between the two minima of Ix) associated with any limit velocity x.
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Therefore a(y)=s(u(y)) in the notation of the preceding corollary. Now
define Ly=inf{z \ 0 : TYz \ y} and calculate

u(y+a(1))=inf{x \ 1 : a(x)−a(1) \ y}

=exp{inf{z \ 0 : a(ez)−a(1) \ y}}

a(y+a(1))=s(u(y+a(1)))

’ DTY(Ly)

The laws of these quantities and their limit behaviour are well-known, cf.,
e.g., ref. 22, Lemma 1.10 and Proposition 1.6 (Renewal Theorem).

The limit law of a(y) is the same as that of a(y+a(1)) since, by
Theorem 1, a(y+a(1)) is independent of a(1), and therefore by dominated
convergence

Ef(a(y))=F
[0,.)
f(a(y−x+a(1))) P(a(1) ¥ dx)

Q F
[0,.)

1f(0) bm−1+F
(0,.)
f(z) m−1zP(dz)2 P(a(1) ¥ dx)

=F
[0,.)
f(z) m−1(bd0(dz)+zP(dz))

for every bounded continuous real function f. L

Look again at the proof of Lemma 2, when the jump structure of Y is
discrete (and the drift positive), say. Note that even in this simple case, the
touching straight lines when approximated by parabola segments do not
attain their limit touching points at a finite time. This means that no limit
cluster is established at a finite time. When the jump structure is not
discrete, note that the touching points are not jump times of Y since Ix

would otherwise change its slope in the wrong direction. So Ix is continu-
ously differentiable in the touching points (but not in a whole neigh-
bourhood). This means that approximating parabolas have strictly different
touching points from their limiting straight line.

Before passing to the two-sided case, we briefly look at the initial
value a(1) which gives the initial position of the left-most particle that
has a limit speed greater than 1. We can deduce from the regularity
properties of Y that P(a(1)=0)=0 if Y has unbounded variation and
0 < P(a(1)=0) < 1 if Y has bounded variation (Yy=cy being a trivial
exception).
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3.5. The Two-Sided Case

We say that X is a doubly infinite Lévy process if

Xy=Yy, X−y=−Ỹy− , y \ 0

for two independent identically distributed Lévy processes Y and Ỹ (starting
from zero).

Theorem 3. (i) When X is a doubly infinite Lévy process with no
positive jumps such that Xy Q. as yQ., then

(a(x)−a(0))x ¥ R ’ (T(x)−T(0))x ¥ R

where

T(x)=inf{y ¥ R : Xy > x}, x ¥ R

is the doubly infinite stationary first passage time subordinator of X.
(ii) When X=exp{Z} for a spectrally negative doubly infinite Lévy

process Z, then

(a(x)−a(1))x > 0 ’ (T(log(x))−T(0))x > 0

where T(y), y ¥ R, is the first passage time subordinator of Z. If T has
characteristics (b, 0,P), then a(x+y)−a(x) has characteristics (log(x+y)
− log(x))(b, 0,P).

Before proving the theorem, we present the approximation method
which allows to conclude from Theorem 2. The following lemma concerns
the first passage time subordinator that we need to know for the proof of
the theorem as well. We need some terminology and preliminaries.

Closed ranges R={Xt : t \ 0}cl of subordinators X are called rege-
nerative sets. If R+ and R− are the ranges of two independent identically
distributed subordinators X and Y with m=E(X1) <., then there is a law
P(g0 ¥ · , d0 ¥ · ) on (−., 0]×[0,.) such that for (g0, d0) independent of
X and Y the set R=(d0+R+) 2 (g0−R−) is stationary in the sense that
R−t ’R for all t ¥ R. The law of (g0, d0) can be given in terms of the
characteristics of X as

P(d0−g0 ¥ dz, g0 ¥ dy)=
b
m

d(0, 0)(dz×dy)+
1
m
1{z \ −y \ 0} dyP(dz) (7)

We refer to Fristedt (24) for a survey on regenerative sets. See also
Bertoin. (22)
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Lemma 3. Let Y=(Yy)y \ 0 be a Lévy process drifting to+.. Then

(Zny=Y(y+n)K0−Yn)y ¥ R ||0
(d)
nQ. (Zy)y ¥ R

where Z is the corresponding doubly infinite Lévy process. Here (d)
denotes functional convergence in the Skorokhod sense.

Furthermore, their first passage time processes

Tnx=inf{y ¥ R : Zny > x}, x ¥ R

converge as well in the Skorokhod sense. In the spectrally negative case, the
limit process T is a stationary two-sided subordinator in the sense that its
closed range R={Tx : x ¥ R}cl is a stationary regenerative set.

Proof. We shall consider a copy Z̃n of Zn coupled to Z and a Lévy
process Z̄n as follows:

Z̃ny=ZyK (−n) and Z̄ny=Z
n
y+Yn=Y(y+n)K0

The coupling copy Z̃n will provide us with convergence results. The Lévy
process Z̄n will allow us to analyse the limits.

Obviously the coupling ensures

Z̃n||0a.s.nQ. Z S Zn||0(d)nQ. Z locally uniformly

Also, using Z−y Q −., yQ., we deduce that in the obvious notation

T̃n||0a.s.nQ. T S Tn||0(d)nQ. T locally uniformly

In the spectrally negative case, the subordinator property is well known
for (T0x)x \ 0, cf. Theorem VII.1 in ref. 20. Denoting R0={T0x : x \ 0}

cl the
closed range of T0, it is also well known that the process of overshoots and
undershootsM0

y=(d
0
y−y, y−g

0
y), where d0y=inf{z \ y : z ¥R0} and g0y=

sup{z [ y : z ¥R0}, approaches a stationary regime n determined by

P(d−g ¥ dz, g ¥ dy)=
b
m

d(0, 0)(dz×dy)+
1
m
1{z \ −y \ 0} dyP(dz)

where (b, 0,P) are the characteristics of T0 and m=E(T01), cf. ref. 22,
Lemma 1.10 and Proposition 1.6 (Renewal Theorem). M0 is easily seen to
be a positive recurrent càdlàg strong Markov process, cf. Exercise IV.6.2(b)
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in ref. 20. M0 does not change when shifting Z0 to start from any non-
zero Z00. Therefore, in the obvious notation,

Mn=M̄n=M0
n+· ||0

(d)
nQ. M locally uniformly

by the ergodic theorem for Markov processes where M is a stationary
Markov process. The suitable ergodic theorem can be established by
coupling arguments. In the bounded variation case R0 is heavy (i.e., has
positive Lebesgue measure) since Z0 drifts to . and only increases by its
deterministic drift component cŒt, cf. also section VII.1 of ref. 20. Therefore
Mn couples with an independent stationary Markov process, cf. Bertoin, (25)

and the result is, e.g., Theorem 7.4.1. of Thorisson. (26) In general, in the
unbounded variation case, the independent coupling is not successful.
Instead, we construct a successful coupling as follows: R0 is light, so the
stationary law n does not charge (0, 0) and the Skorokhod embedding of n,
cf. Bertoin and Le Jan, (27) provides a stopping time T such that M0

T ’ n.
Using T as a coupling time to a stationary process, we obtain the ergodic
theorem.

Note thatM is not just some limit process but

M̃n||0
a.s.
nQ. M S Mn||0

(d)
nQ. M locally uniformly

shows that it is the correct functional of Z. In fact, whenever we wrote
locally uniform convergence, we could have been more precise in that the
limit is attained at an a.s. finite n=N(x) uniformly on [x,.). This type of
convergence implies also that

F
·

A
1R̃n(y) m(dy) = F

·

A
1{M̃ny=(0, 0)}m(dy)

||0
a.s.
nQ. F

·

A
1{My=(0, 0)}m(dy)=F

·

A
1Rm(dy)

locally uniformly for every real-valued random variable A and every non-
atomic s-finite measure m. By choosing A=T0 and m an exact Hausdorff
measure of R0, cf. Fristedt and Pruitt, (28) this is the locally uniform con-
vergence of local times on R. By passing to the right-continuous inverse we
see that T is the inverse local time of the stationary regenerative set R. L

As part of the proof of Lemma 3 we obtained

Corollary 6. In the situation of Lemma 3 the process (dy−y,
y−gy)y ¥ R of overshoots and undershoots of T is stationary. Here dy=
inf{z \ y : z ¥R} and gy=sup{z [ y : z ¥R}. The stationary distribution
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(the law of (d0, g0)) is determined by (7) where (b, 0,P) are the character-
istics of T and m=E(T1−T0)=b+>(0,.) xP(dx).

Note that the law of T is determined by its range R only up to a linear
transformation. Two more ingredients have to be specified: the law of the
location

L0=sup
y [ 0
{Zy}, E(exp{−lL0})=

l

mF(l)

of the passage of T across zero and the deterministic mean drift m.
Cf. ref. 20, VII.(3) for the law of L0 in terms of the Laplace exponent

F(l)=−log E exp{−l(Tt+1−Tt)}=bl+F
(0,.)
(1−e−lx)P(dx)

of the stationary subordinator T.

Proof of Theorem 3 (i) We obtain this from Theorem 2 by the
limiting procedure

(Zny=Y(y+n)K0−Yn)y ¥ R ||0
(d)
nQ. (Zy)y ¥ R

that we analysed in Lemma 3. In this lemma we obtained the convergence

(Tnx)x ¥ R ||0
(d)
nQ. (Tx)x ¥ R

of first passage time processes

Tnx=inf{y ¥ R : Zny \ x}, x ¥ R

where the limit T is a stationary subordinator having the transition kernel
of T0.

The very same argument as in Lemma 3 also applies to show that

(an(x))x ¥ R ||0
(d)
nQ. (a(x))x ¥ R

where

an(x)=arg+min
a ¥ R

3F a
0
(Zny−x) dy4

and the limit a is a stationary subordinator having the transition kernel
of a0.
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(ii) We adapt the argument in (i) which gives us

(an(exp{x}))x ¥ R ||0
(d)
nQ. (a(exp{x}))x ¥ R

where for z > 0

an(z)=arg+min
a ¥ R

3F a
0
(Zny−z) dy4

Here we obtain a p exp as a stationary subordinator having the transition
kernel of a0 p exp. L

Note that we do not have a ’ T since T(0) is supported by (−., 0]
whereas a(0) is supported by R and, in particular, can take positive values.

Corollary 7. Let X=exp{Z} for a spectrally negative doubly
infinite Lévy process Z, then for all y ¥ R

P(a(y) ¥ dz)=bm−1d0(dz)+m−1zP(dz)
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